Inputs
Outputs
Neuron type
Best algorithm has been found - locked
Patterns
Pattern |
Input |
Output |
1. |
|
|
2. |
|
|
3. |
|
|
4. |
|
|
Applicable neurons
-
NOT
-
OR
-
AND
-
XOR
-
NAND
-
NOR
-
IF
-
Rectangle - circuit
-
begin of start tag
-
tag div
-
x × (-1)
-
>, < opposite
Algorithm
Test
Code made by AI:
/**
* 1:
*
* @return {Array}
*/
function neuron501()
{
return [1];
}
/**
* Minus (x - y):
*
* @param x1 Number X
* @param x2 Number Y
* @return {Array}
*/
function neuron2(x1, x2)
{
math.config({number: 'BigNumber', precision: 64}); return [math.eval(Number(x1) + '-'+Number(x2)).toString()];
}
/**
* NOT:
*
* @param x1 1/0
* @return {Array}
*/
function neuron567(x1)
{
var outputs = [];
outputs[0] = x1;
arr = neuron501();
outputs[1] = arr[0];
arr = neuron2(outputs[1], outputs[0]);
outputs[2] = arr[0];
return[outputs[2]];
}
/**
* Multiple (x × y):
*
* @param x1 Number X
* @param x2 Number Y
* @return {Array}
*/
function neuron3(x1, x2)
{
math.config({number: 'BigNumber', precision: 64}); return [math.eval(Number(x1) + '*'+Number(x2)).toString()];
}
/**
* 1:
*
* @return {Array}
*/
function neuron501()
{
return [1];
}
/**
* Minus (x - y):
*
* @param x1 Number X
* @param x2 Number Y
* @return {Array}
*/
function neuron2(x1, x2)
{
math.config({number: 'BigNumber', precision: 64}); return [math.eval(Number(x1) + '-'+Number(x2)).toString()];
}
/**
* NAND:
*
* @param x1 1/0
* @param x2 1/0
* @return {Array}
*/
function neuron572(x1, x2)
{
var outputs = [];
outputs[0] = x1;
outputs[1] = x2;
arr = neuron3(outputs[0], outputs[1]);
outputs[2] = arr[0];
arr = neuron501();
outputs[3] = arr[0];
arr = neuron2(outputs[3], outputs[2]);
outputs[4] = arr[0];
return[outputs[4]];
}
/**
* Implication:
*
* @param x1 A (1/0)
* @param x2 B (1/0)
* @return {Array}
*/
function neuron597(x1, x2)
{
var outputs = [];
outputs[0] = x1;
outputs[1] = x2;
arr = neuron567(outputs[1]);
outputs[2] = arr[0];
arr = neuron572(outputs[2], outputs[0]);
outputs[3] = arr[0];
return[outputs[3]];
}
Code made by AI: